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Abstract. Mergers of stellar-mass black holes were recently observed in the gravitational wave
window opened by LIGO. This puts the spotlight on dense stellar systems and their ability to
create intermediate-mass black holes (IMBHs) through repeated merging. Unfortunately, at-
tempts at direct and indirect IMBH detection in star clusters in the nearby universe have proven
inconclusive as of now. Indirect detection methods attempt to constrain IMBHs through their
effect on star cluster photometric and kinematic observables. They are usually based on look-
ing for a specific, physically motivated signature. While this approach is justified, it may be
suboptimal in its usage of the available data. Here I present a new indirect detection method,
based on machine learning, that is unaffected by these restrictions. I reduce the scientific ques-
tion whether a star cluster hosts an IMBH to a classification problem in the machine learning
framework. I present preliminary results to illustrate how machine learning models are trained
on simulated dataset and measure their performance on previously unseen, simulated data.
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1. Introduction

The recent detections of black-hole mergers by
LIGO (Abbott et al. 2016) showed that stellar-
mass black holes in the local universe indeed
do merge, giving rise to heavier objects. This
finding supports the intermediate-mass black
hole (IMBH) formation scenario based on re-
peated mergers in dense stellar systems (Miller
& Hamilton 2002) such as massive star clus-
ters. IMBHs are thus expected to be present in
at least some clusters in the Milky Way, and
should be detectable either directly (through
radio or X-ray emission) or indirectly (by their
effect on cluster dynamics). Until now, how-
ever, both the direct and indirect approach
were inconclusive, with no undisputed detec-

tion (see e.g. Lützgendorf et al. 2011; Lanzoni
et al. 2013). Direct detection in old stellar sys-
tems such as globular clusters is intrinsically
difficult due to the lack of gas in that environ-
ment, while indirect detection requires care to
optimise the usage of the available kinematic
and photometric data. In this respect, indirect
detection methods are usually based on look-
ing for a specific, physically motivated sig-
nature, so they may potentially throw away a
large part of the information contained in the
data.

In this paper I present an indirect detection
method based on machine learning. I create a
synthetic sample of star clusters by running di-
rect N-body simulations. A fraction of the clus-
ters contain an IMBH. I then prepare mock ob-
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Table 1. Simulation set. Each simulation is identified by a string summarizing its initial condi-
tions (Col. 1). The simulation 16kBH50W02 for example contains 16000 stars, an IMBH with
mass 50M∗ where M∗ is the mass of a cluster star in the simulation, and was initialised as a King
model with central dimensionless potential W0 = 2. When the identifier ends in s followed by a
number it is a rerun with a different random seed. The number of stars in each simulation is listed
in Col. 2, the black hole mass in Col. 3, and W0 in Col. 4.

Simulation # stars /103 MBH/M∗ W0

16kBH50W02 16 50.0 2
16kBH50W04 16 50.0 4
16kBH50W06 16 50.0 6
16kBH50W08 16 50.0 8
16kBH100W02 16 100.0 2
16kBH100W04 16 100.0 4
16kBH100W06 16 100.0 6
16kBH100W08 16 100.0 8
16kBH150W02 16 150.0 2
16kBH150W04 16 150.0 4
16kBH150W06 16 150.0 6
16kBH200W02 16 200.0 2
16kBH200W04 16 200.0 4
16kBH200W06 16 200.0 6
16kBH250W02 16 250.0 2
16kNOBHW02 16 0.0 2
16kNOBHW02s2 16 0.0 2
16kNOBHW02s3 16 0.0 2
16kNOBHW02s345 16 0.0 2
16kNOBHW02s4 16 0.0 2
16kNOBHW03 16 0.0 3
16kNOBHW03s341 16 0.0 3
16kNOBHW04 16 0.0 4
16kNOBHW04s374 16 0.0 4
16kNOBHW04s60 16 0.0 4
16kNOBHW04s70 16 0.0 4
16kNOBHW04s80 16 0.0 4
16kNOBHW06 16 0.0 6
16kNOBHW06s60 16 0.0 6
16kNOBHW06s70 16 0.0 6
16kNOBHW06s80 16 0.0 6
16kNOBHW08 16 0.0 8
16kNOBHW08s60 16 0.0 8
16kNOBHW08s70 16 0.0 8
16kNOBHW08s80 16 0.0 8

servations from simulation snapshots and mea-
sure cluster observables. Each snapshot is thus
mapped into a point in an N-dimensional fea-
ture space, where machine learning algorithms
are applied to classify clusters into IMBH hosts
or non-hosts. The classifiers are then used to
predict the classification of previously unseen
simulated data.

2. Simulations
I run a set of N-body simulations using the
direct summation code NBODY6 (Aarseth
1999). The initial conditions for all simulations
are King (1966) models with central dimen-
sionless potential in the 2 − 8 range, with no
primordial binaries and equal mass stars, ex-
cept for the IMBH (when present). The sim-
ulations were evolved for 1000 N-body units



Pasquato: Detecting IMBHs in GCs with machine learning 573

Fig. 1. Fraction of misclassified snapshots as a
function of the size of the field of view (in units
of the projected half-mass radius of the simulated
cluster) for a fixed number of 2D bins (30 × 30).
Increasing the field of view improves the accuracy
for small fields of view because more relevant infor-
mation is accessible, but degrades the accuracy for
large fields of view because it uses up 2D bins in
the external regions of the cluster, thus reducing the
resolution in the center due to the fixed number of
bins.

(Heggie & Mathieu 1986), corresponding to
about three half-mass relaxation times. I var-
ied the mass of the IMBH in the 50−250 range
in units of the mass of a cluster star. The sim-
ulated clusters evolved in isolation (i.e. with-
out tidal interaction with the host galaxy) and
no stellar evolution was considered. Some sim-
ulations share initial conditions but were ini-
tialised with a different random seed. The sim-
ulations are listed in Tab. 1.

3. Mock observations, feature space,
dimensionality reduction, and
learning

I extracted 700 snapshots from the simulations
(20 snapshots spaced by 10 N-body units -
about four crossing times - for each simula-
tion). The positions and velocities of a ran-
domly selected fraction of the stars in each
snapshot (to simulate observational incom-
pleteness) were converted to projected values

Fig. 2. Fraction of misclassified snapshots as a
function of the number of 2D bins for a fixed field
of view. Increasing the number of bins monotoni-
cally improves the accuracy, but a larger number of
bins slows down the calculations with increasingly
reduced effect on the accuracy.

(radial distance on the plane of the sky from
the cluster center and velocity along the line of
sight), obtaining a two-dimensional plot in the
radius-velocity plane for each snapshot. The
plane was then overlaid with a square NxN
grid, resulting in 2D bins within which the
number of stars was counted and normalised
to the [0, 1] range. This translated every snap-
shot into an image, i.e. an array of N2 numeric
values comprised between 0 and 1. The feature
space is thus N2 dimensional. The effect of dif-
ferent values of N was explored, but in any case
the large dimensionality of the feature space
called for dimensionality reduction, which was
carried out with principal component analysis.
Only the first 10 principal components were
retained. On this dimension-reduced feature
space I trained plain C5.0 trees (Quinlan 1993)
using the R library C50.

4. Validation

I measured the accuracy of classification by
using five-fold cross-validation. In this ap-
proach the dataset is randomly partitioned into
five subsets, each sharing the same number of
records. Training algorithms are then applied
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to four of the five slices and the trained model
is used to predict the classification label of data
in the fifth slice. This is repeated five times ro-
tating the slices. The resulting predictions are
compared to the actual label of the data (i.e. to
whether a snapshot contained an IMBH or not)
and a rate of misclassification is computed as
follows:

D =
#misclassifications

#snapshots
(1)

The cross validation procedure was re-
peated 10 times with different random seeds to
estimate the standard deviation of the distribu-
tion of D.

5. Results and conclusions

The misclassification rates D obtained using
cross-validation range from few percent to over
20% depending on the parameters chosen. In
particular I observed a dependence on

– the field of view of the mock observations;
– the number of 2D bins in the mock obser-

vations;
– the completeness of the mock observa-

tions;
– the number of principal components of fea-

ture space included in the analysis;

In Fig. 1 I plot the misclassification rate D
as a function of the size of the field of view
(in units of the projected half-mass radius of
the simulated cluster) for a fixed number of 2D
bins (30 × 30) and principal components used
(10).

In Fig. 2 the number of 2D bins is varied
for a fixed field of view equal to four times the

half-mass radius and 10 principal components.
In both cases the completeness was set to 1.

In this simpified set-up an out-of-the-box
algorithm such as C5.0 achieves a misclas-
sification rate of some percent in the most
favourable cases. This is encouraging, sug-
gesting that further development of machine-
learning based indirect detection may be a
promising way to spot IMBHs in real obser-
vational data.
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